PathStone Group

PathStoneGroup.com

Process Observation

- 1. Process Observation: What is it ?
- 2. OEE purpose and benefits
- 3. Phases
- 4. General Guidelines
- 5. **Procedure**
- 6. Limits and Disadvantages
- 7. Takeaways

Introduction

What is it ?

Is a useful tool for **measuring how much time** people spend on each part of a process.

Introduction

Purpose and Benefits

- The **improvement** of processes and procedures
- The improvement of plan, office, or service area **layout**
- Economy in human effort and the reduction of unnecessary fatigue
- Improvement in the use of materials, machines, and manpower
- Development of better **physical working environment**

Phases:

What is to be measured. Identify steps (Process map). Approach to the experts. Draft standard time.

Use of timing device. Consider allowances. Record several runs.

Synthesis

Use template to enter data. Get results and validate them. Determine Standard times.

General Guidelines:

- Use the largest sample possible.
- Take **people's skills** into consideration.
- Try **not to record** while observation is executed.
- Beware the Hawthorne Effect.
- Do not lose sight of the **goal**.

Procedure:

Procedure:

This involves statement of the use of the result, the precision desired, and the required level of confidence in the estimated time standards.

The desired accuracy is often stated as a percentage of the average of the observed time. The sample size needed to achieve a certain level of accuracy can be computed using the formula:

z value

1.65

1.96

2.00

2.33

2.58

Confidence

Level

95.0%

95.5%

98.0%

Procedure:

Sample size:

- Where: *n* = number of observations needed
 - x = mean of the observed time
 - a = allowable error as percentage of average time
 - *e* = maximum acceptable error
 - s = standard deviation of observed time
 - *z* = number of normal standard deviation needed for desired confidence

A time study analyst wished to estimate the time required to perform a certain job. A preliminary work showed a

mean of 6 minutes and a standard deviation of 2 minutes. The desired confidence is 95%.

What is the sample size needed if the desired error is (a) + 10% and (b) one-half minute of the sample mean?

Confidence Level	z value
90.0%	1.65
95.0%	1.96
95.5%	2.00
98.0%	2.33
99.0%	2.58

Procedure:

for (b)

PathStone Group

for (a)

$$n = \left(\frac{1.96(2)}{0.10(6)}\right)^2$$

n = 42.68 or 43 sample size

$$n = \left(\frac{1.96(2)}{0.5}\right)^2$$

n = 61.47 or 62 sample size

Process Observation

Procedure:

Determine whether standard method and conditions exist and whether the operator is properly trained.

If need is felt for method study or further training of operator, the same may be completed before starting the process observation study.

"As you can see, we've been able to significantly boost productivity by making everyone work much, much harder."

Procedure:

Select the operator

Procedure:

The standard method, operation, operator, product, equipment, quality, and conditions.

Use the worksheet.

Procedure:

Divide the operation into reasonably small elements.

Procedure:

Record the data for a few numbers of cycles. Use the data to estimate the total numbers of observations to be taken.

Distribution of different sample sizes

Procedure:

Required number of cycles by timing and rating the operator.

Procedure:

Multiply it by the rating factory to get normal time.

Normal Time (*NT*) = *Observed time x Rating factor*

Procedure:

Example:

An operator takes an average of 10 minutes to complete a particular task. Operator's performance rating (pace) is 110%. What is the normal time for completing this task?

NT = 10 minutes (110%/100%)

NT = 11 minutes

Add the normal time of various elements to obtain the normal time for the whole operation.

Procedure:

The normal time arrived at, therefore does not include unavoidable delay and other lawful lost time.

It is necessary and important that the time study analyst applies some adjustment, or an allowance to pay off for such losses, so that time standard is established for the given job.

Procedure:

Adding allowances to the normal time of operation.

Standard Time = NT (1 + AF)

Procedure:

Example:

An operator takes an average of 10 minutes to complete a particular task. Operator's performance rating (pace) is 110% and there is an allowance or 15%. What is the normal time and standard time (ST) for completing this task?

Given the NT = 11 minutes,

Therefore, the standard time is:

Standard Time = 11(1+0.10)

ST = 12.65 minutes

Limits and Disadvantages:

- Inaccuracy when capturing tasks
- Hawthorne Effect
- It tasks several observations to get the accuracy
- Task variations need to be measured separately
- Tasks need to be remeasured when process change

Preroll Assembly

TOOLBOX

Process Observation Worksheet

M	PathStone Group		Time Motion Study Worksheet												
											UOM	Pouches			
Operator Task / Operation	Type of	Cycle Time (seconds)			Ave Obs Ave O	Ave Obs	s Normal	Standard Time	Target	Sample Size					
	Task / Operation	Operation	1	2	3	4	5	(sec)	(min)	(min)	(min)	Pouches/hr	Preliminary mean of observatio	n time	34
1 (Open the box with tubes	Manual	2	3	5	5	2	3.40	0.06	0.06	0.003	169,412	Standard deviation of observed	time	2
2 F	Fit box inside dispenser	Manual	5	3	5	7	6	5.20	0.09	0.09	0.004	110,769	Confidence level required (z Val	ue)	1.96
3 F	Fill kanban bin with tubes	Manual	3	4	3	4	4	3.60	0.06	0.06	0.003	160,000	Maximum acceptable error		5%
4 F	Pick up empty kanban bins	Manual	2	4	3	5	3	3.40	0.06	0.06	0.003	169,412			
5 1	Take one tube and label it	Process	3	4	4	3	6	4.00	0.07	0.06	0.005	105,882			5
6 F	Place tube on bin	Manual	4	3	5	4	2	3.60	0.06	0.06	0.003	160,000			
7 6	Pass tube to check weigher machine	Machine	3	3	4	3	3	3.20	0.05	0.05	0.003	180,000		Performance Rating Factor	Allowance Factor
8 6	Place 12 tubes in a case	Manual	4	5	4	3	5	4.20	0.07	0.07	0.004	137,143	Manual Operation	100%	5%
													Machine Operation	100%	5%
													Process (Manual+Machine)	85%	8%
														_	
													Working Hours	8.00	
													Total Cycle Time 30.6 sec		sec
														0.51 min	
													Total Normal Cylce Time 0.50 min		min
													Total Standard Cylce Time	0.03	min
													Expected Target	149,077	Pouches/hr

Takeaways

- Video Time and Motion study accurately document and time any task while simultaneously isolating the non-value-added work content.
- Combine the process observation with a Value-Added Analysis
- Build good a good relationship with the operators to make the process observation more accurate.

ThankYou

PathStone Group

PathStone Group

PathStoneGroup.com

Copyright notice -

This content is copyright of © PathStone Group 2022. All rights reserved.

Any redistribution or reproduction of part or all of the contents in any form is prohibited other than the following:

- you may print or download to a local hard disk extracts for your personal and non-commercial use only
- you may copy the content to individual third parties for their personal use, but only if you acknowledge the PathStone Group website as the source of the material

You may not, except with our express written permission, distribute or commercially exploit the content. Nor may you transmit it or store it in any other website or other form of electronic retrieval system.

Process Observation

PathStone Group

PathStoneGroup.com

Reference: Focused Excellence by Edgar Anaya © 2022 A Practical Tool Book for Business Competitiveness and Lean Transformation