PathStone Group

OEE

Agenda

- 1. OEE: What is it?
- 2. OEE purpose and benefits
- 3. The Six Big Losses
- 4. Availability
- 5. Performance
- 6. Quality
- 7. TEEP
- 8. Takeaways

Introduction

What is it?

Overall Equipment Effectiveness (OEE) is a KPI that identifies the percentage of planned production time that is truly productive.

Introduction

Purpose and Benefits

The OEE keeps track of how things are going, and identify where they are experiencing excessive downtime or other inefficiencies.

Understanding what these areas of loss are can help us to identify them and **take action** to have them **minimized** or **eliminated**.

The Six Big Losses:

Breakdowns

Setup & Adjustments

Small Stops

Reduce Speed

Startup Rejects

Production Rejects

The Six Big Losses:

... and its relation with OEE

TEEP	All Available time (24 hrs – 365 days a year)					
OOE	Total operations time (Regular "Shift time" available)					
Availability	Potential production time (Actual planned "Shift time")			on time		
Availa	Actual production time (Machine running)			Time losses: Breakdowns Changeovers Line restraint	scheduled time of operation during operation time	Not scheduled time No shift planned for production
mance	Theoretical output (Running time x theoretical speed)			iled time ation duri	Not scheduled time hift planned for produc	
Performance	Actual output		Speed losses: Minor Stoppages Reduced speed		Unscheduled time out of operation duri	Not so No shift pla
Quality	Actual output		Effectiveness losses) Equipment taken o	2
	Good product	Quality losses: Scrap Out of spec Rework			Equipme	

OVERALL EQUIPMENT EFFECTIVENESS

The Six Big Losses:

1. Breakdowns:

Are one of the most frustrating types of efficiency loss because **they are unexpected** and can often result in a complete stoppage of work.

The Six Big Losses:

1. Breakdowns Countermeasures:

- Regularly Scheduled Maintenance (TPM)
- Replacements
- Replacement Parts

The Six Big Losses:

2. Setup & Adjustments:

This type of loss is also caused by shortages in materials or inventory, or even insufficient staffing to get specific jobs done.

The Six Big Losses:

2. Setup & Adjustments Countermeasures:

- Planning for Future Orders
- Like Order Scheduling
- On Site Inventory Planning

The Six Big Losses:

3. Small Stops

Small stops are all the little things that cause a facility to slow their production. Some examples of this would include blocked sensors, conveyor belts backing up, jams in components, mis-feeds into or out of machines, and any number of other similar problems.

The Six Big Losses:

3. Small Stops Countermeasures

- Standardize Best Practices
- Immediate Notification
- Authorize Intervention

OEE

The Six Big Losses:

4. Reduced Speed

This is perhaps the type of loss that can be the most difficult to identify or even notice while it is happening. Things can appear to be running smoothly throughout the facility, but when things are not operating at optimal speed, there is a significant loss in productivity.

OEE

The Six Big Losses:

4. Reduced Speed Countermeasures

- Evaluate Best Practices
- Keep Machines Well Maintained
- Avoid Intentional Speed Reductions

OEE

The Six Big Losses:

5. Startup Rejects

Occurs when switching over to a new product or when other changes are made.

In many cases the first set of products made have some sort of issue, so they cannot be used.

This results in a lot of scrapped products, or items that need to be fixed or even rerun through the manufacturing process.

OEE

The Six Big Losses:

5. Startup Rejects Countermeasures

- Small Initial Runs
- Improve Startup Procedures
- Implementing Improved Problem Monitoring

15

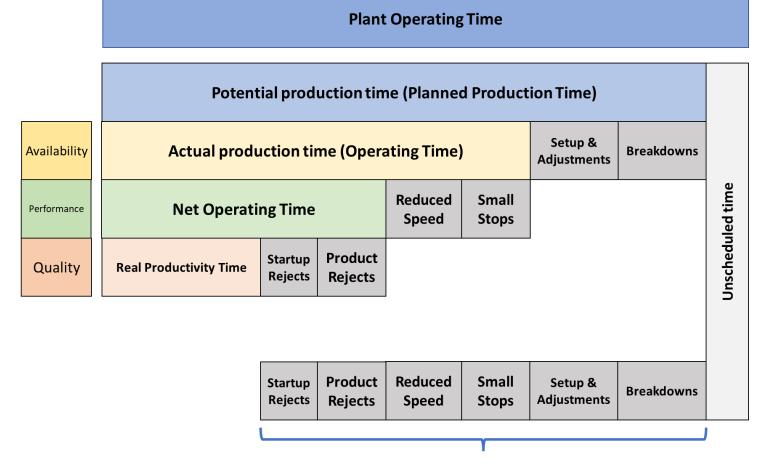
OEE

The Six Big Losses:

6. Production Rejects

Production rejects are like the startup rejects, but they can occur at any time. These are often more difficult to fix because of this reason.

The Six Big Losses:


6. Production Rejects Countermeasures

- Reject Tracking
- Downtime Inspections
- Active Monitoring

OEE

The Six Big Losses:

SIX BIG LOSSES

18

OEE METRIC	SIX BIG LOSSES	EXAMPLE	
Availability	Breakdowns	Tooling failure, equipment failure, unplanned maintenance	
	Set Up and Adjustments	Changeover, material shortage, warm-up line	
Performance	Reduced Speed	Rough running, equipment wear, operator inefficiency, incorrect settings	
	Small Stops	Obstructed flow, jam, misfeed, sensor blocked, cleaning, checking	
Quality	Start up rejects	Scrap, rework, in process damage, incorrect assembly	
	Production rejects	Same as above but during steady- state production	

OEE

Availability:

An Availability score of 100% means the process is **always** running during planned production time (it is never down).

Availability Loss includes all events that stop planned production for an appreciable amount of time (usually several minutes).

Examples include equipment failures, unplanned maintenance, material shortages, and changeovers.

OEE

Availability:

Planned Production Time is the total time that the manufacturing process is scheduled for production.

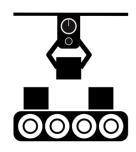
Run Time is simply Planned Production Time less Stop Time, where Stop Time is defined as all the time where the manufacturing process was intended to be running but was not due to Unplanned Stops (e.g., Breakdowns) or Planned Stops (e.g., Changeovers).

Availability:

The actual amount of time the production was happening. Naturally, stops like equipment failures and changeovers reduce this number.

Availability

Run time


Planned Production time

Represent production schedule, e.g. one 8-hour shift. It doesn't cover planned stops like lunch breaks

Availability:

Time available for January: 25 days * 8hr * 2 shifts = 400 hr

Actual Run time for January:
Produced 78,200 units at
230 units/hr average =
340 hr

AVAILABILITY

85%

OEE

Performance:

A Performance score of 100% means when the process is running as **fast as possible** (at the theoretical maximum speed; each part at the Ideal Cycle Time).

Performance Loss includes all factors that cause the process to operate at less than the maximum possible speed when running including both slow cycles and small stops.

Performance:

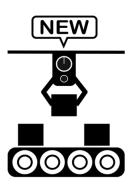
Ideal Cycle Time is the theoretical minimum time to produce one part (it is NOT a 'budget' or 'standard' time). It is important that Ideal Cycle Time be a true and honest measure of how fast the process can run.

25

Performance:

The fastest possible time to manufacture one piece (in theory)

Total number of produced pieces (including the defective ones)


Performance =

Ideal Cycle time x Total count

Run time

The amount of time the machine spent running

Performance:

Maximum rated productivity **450** units/hr

Actual Productivity for January: **230** units/hr

PERFORMANCE

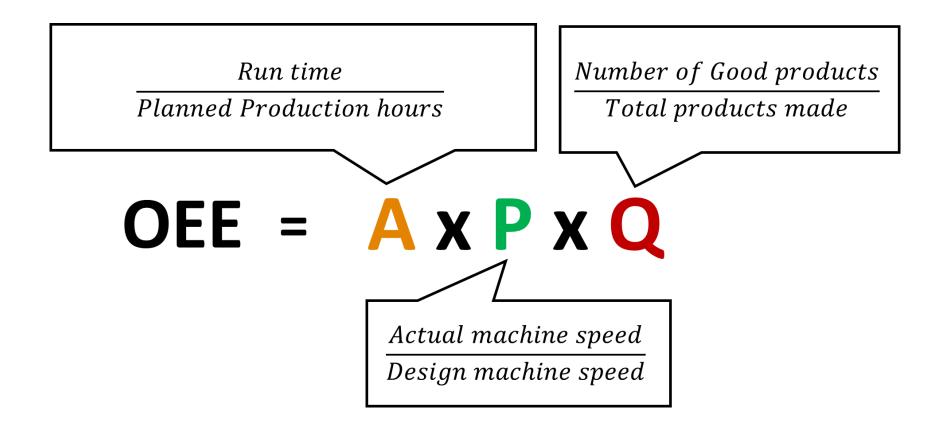
51%

Quality:

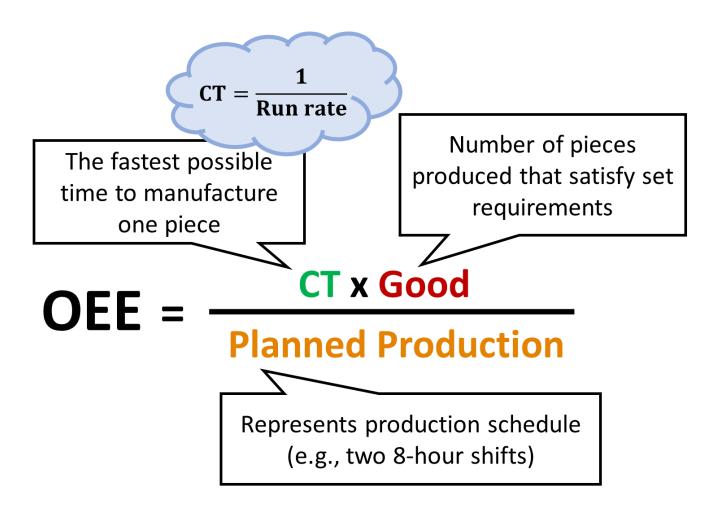
A Quality score of 100% means there are **no defects** (only good parts are produced).

Quality Loss includes productivity lost from manufacturing parts that do not meet quality standards after the first pass (like the concept of first pass yield). This includes scrap and parts that require rework.

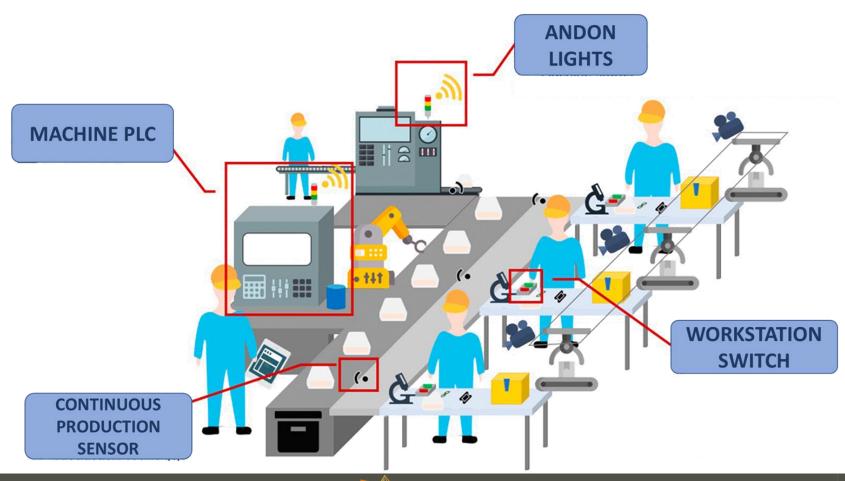
28


Quality:

Number of manufactured pieces that meet specification requirements


Quality = Good count
Total count

Total number of produced pieces (including the defectives ones)


Calculating OEE

Shortcut Calculating OEE

OEE Technology

World class for continuous stream > 95% processes World class for continuous discrete > 90% processes > 85% World class for batch processes TOOEE **75% - 85%** Pretty good OR NOT TOOEE Acceptable if quarterly trends are **65% - 75%** improving Need to initiate a process < 65% MAN improvement initiative

Total Effective Equipment Performance (TEEP):

TEEP is a performance metric that provides insights as to the true capacity of the manufacturing operation.

It takes account both **Equipment Losses** (as measured by OEE) and **Schedule Losses** (as measured by Utilization).

Total Effective Equipment Performance (TEEP):

- OEE measures the percentage of Planned Production Time that is truly productive.
- TEEP measures the **percentage of All Time** that is truly productive.

OEE

Total Effective Equipment Performance (TEEP):

Capacity can be defined as "the amount that can be produced". From a discrete manufacturing perspective, we can define capacity as "the maximum number of parts that can be manufactured".

Capacity is fundamentally a part-based metric (example, our current capacity is 24,000 red widgets per hour).

36

OEE

Total Effective Equipment Performance (TEEP):

Utilization can be defined as "how much something is used". From a discrete manufacturing perspective, we can define utilization as "the proportion of time that manufacturing equipment is used".

Utilization is fundamentally a percentage-based metric (example, our current utilization is 47.62%).

Total Effective Equipment Performance (TEEP):

TEEP is the ratio of Fully Productive Time to All Time. It considers schedule losses and OEE losses (the Six Big Losses).

TEEP is calculated as:

$$TEEP = OEE \times Utilization$$

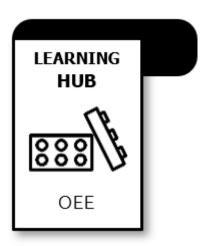
Utilization is calculated as:

$$Utilization = \frac{Planned\ produciton\ time}{All\ time}$$

38

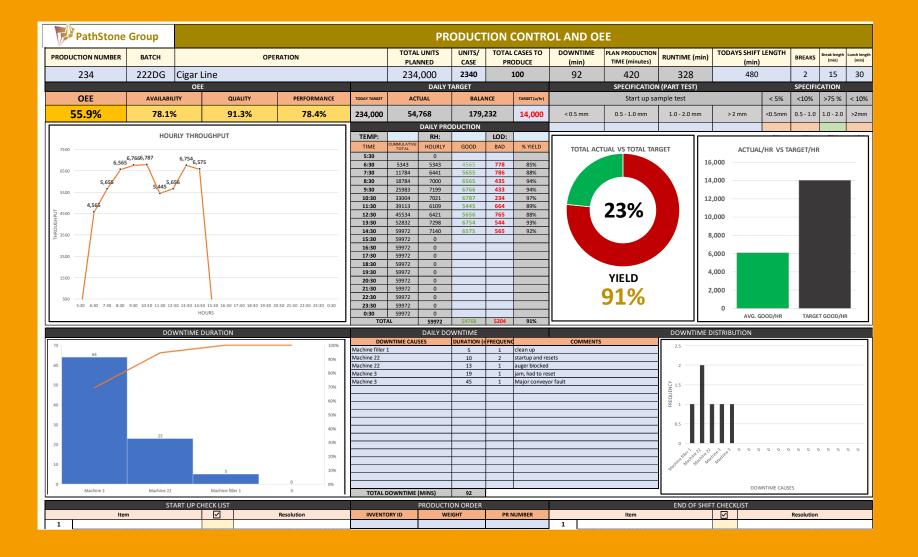
Total Effective Equipment Performance (TEEP):

Total Effective Equipment Performance (TEEP):


- TEEP indicates how much capacity is waiting to be unlocked in the "hidden factory".
- It shows how much potential the operation has to increase throughput with our current equipment.
- In many cases, reclaiming time from the hidden factory is a faster and less expensive alternative to purchasing new equipment.

Total Effective Equipment Performance (TEEP):

- TEEP can also be used to get a sense of our potential sales capacity as it considers the full capacity of our manufacturing plant.
- Even a world-class manufacturing plant operating around the clock typically achieves only 80% to 90% Utilization of total capacity.


Fresh Water Inc

ITEM	DATA
Shift Length	8 hours (480 minutes)
Breaks	2 x 15 minute each and 1 x 30 minutes
Downtime	92 minutes
Ideal Run Rate	14,000 units per hour
Total Count	59,972 units
Reject Count	5,204 units

Takeaways

OEE

- What is most beneficial about measuring OEE and TEEP in this format is they can very easily lead the improvement team to the correct tool for reducing or eliminating the loss.
- One should only begin to implement lean manufacturing once there has been a sustained OEE and TEEP for three to six months.
- Lean manufacturing techniques can further eliminate process-based operational and planned losses.

Thank You

PathStone Group

PathStoneGroup.com

Copyright notice -

This content is copyright of © PathStone Group 2022. All rights reserved.

Any redistribution or reproduction of part or all of the contents in any form is prohibited other than the following:

- you may print or download to a local hard disk extracts for your personal and non-commercial use only
- you may copy the content to individual third parties for their personal use, but only if you acknowledge the PathStone Group website as the source of the material

You may not, except with our express written permission, distribute or commercially exploit the content. Nor may you transmit it or store it in any other website or other form of electronic retrieval system.

PathStone Group

edgar@pathstonegroup.com

Reference: Focused Excellence by Edgar Anaya
© 2022

A Practical Tool Book for Business Competitiveness and Lean Transformation